The Decoregger

Decoregger 1

Hey look! It’s the fossilized remains of a possible evolutionary ancestor of the EggBot!

Decoregger 2

Okay, it’s pre-USB but technically it’s not a fossil. Like many of us, the decoregger dates from the mid-1970′s. It’s a simple function gadget that mounts an egg so that you can spin it, with arm second arm that holds tiny felt-tip pens.  Curiously, there are also some contemporary machines bearing the same name that lack the separate arm.

 

Decoregger 3 Decoregger 4
Decoregger 5 Decoregger 6

In the upper-left photo, you can see that the pen holder has a separate “paddle” that you hold, to manually move the pen in the arc across the egg surface.  Lacking the proper felt-tip pens, we found that a uni-ball micro pen was about the right diameter to fit in the holder.

One surprising thing: To model this thing, we used regular “large AA” (not extra large, and not jumbo) size eggs from the grocery store. And it was only barely possible to squeeze the egg into the holders. From the picture on the box, it looks like there’s plenty of room for even the largest egg.  Possible explanation #1: Plastic shrinks over time. Possible explanation #2: The egg pictured on the box is from the advertising land of freaky micro-children.

But in any case, the decoregger is a cute little machine, and it looks like it might be fun to play with.  The actual play is a matter of turning knob 1 and knob 2, so it feels a lot like an Etch-a-Sketch in spherical coordinates. Now if only there were some way to strap a couple of motors to it and perform a CNC conversion….

Decoregger 8

Speaking of which, it really is a lot smaller than the EggBot.  Heck, you could probably fit the whole thing inside the EggBot.

Decoregger 7

Wait — am I doing this right?

Special thanks to Michelle Hlubinka for finding this artifact and sending it to us!

A Vintage Bliley Crystal

Bliley Crystal 1
Bliley Crystal 2 Bliley Crystal 4
Bliley Crystal 7 Bliley Crystal 6

They don’t make — or package — them like they used to. This is a vintage radio crystal from the Bliley Electric Company.  Bliley is still around, making modern oscillators and even space flight hardware, but this vintage unit is a beauty.

Introduced in the 1930′s, the Bliley LD2 was a popular frequency standard for amateur radio operators. A 1935 advertisement in QST magazine claimed efficiency and extremely low drift (<8 ppm/°C), guaranteed operation, an improved holder, and a cost of only $4.80, or $82.79 in 2014 dollars.  This particular unit is calibrated at 3.9895 MHz (“3989.5 KC”), for a radio wavelength of about 75.2 m.
Bliley Crystal 9

 

Unlike most modern crystals, this type comes apart easily. Inside, two rectangular steel plates sandwich a thin slice of quartz crystal, all held pressed together with a simple spring.

If you’re interested to learn more, there’s a wealth of additional information about vintage crystals and the Bliley company available online, here.

The “Three Fives” Discrete 555 Timer Kit

555 kit

We’re pleased to announce our newest kit, the “Three Fives” Kit, a kit to build your own 555 timer circuit out of discrete components. Here’s a way to re-create one of the most classic, popular, and all-around useful chips of all time.

The kit is a faithful and functional transistor-scale replica of the classic NE555 timer integrated circuit, one of the most classic, popular, and all-around useful chips of all time. The kit was designed and developed as a collaboration with Eric Schlaepfer, based on a previous version (pictured here), and adapted from the equivalent schematic in the original datasheets for the device.  There have been a few other examples of circuits like these (such as the one that we featured in our article about the 555 contest), but we really like how this one has come together.

555 kit

The kit is designed to resemble an (overgrown) integrated circuit, based around an extra-thick matte-finish printed circuit board. The stand— which gives the circuit board eight legs in the shape of DIP-packaged integrated circuit pins —is made from machined and formed semi-rigid PVC foam.

555 kit

To actually hook up to the giant 555, there are the usual solder connection points, but there are also thumbscrew terminal posts that you can use with bare wires, solder lugs, or alligator clips.

555 kit

One of the really cool things about having a unintegrated disintegrated discrete circuit like this is that you can actually hook up probes and monitor what happens at different places inside the circuit.

555 kit

So that’s our new “Three Fives” Kit (shown above with an original NE555 for scale). It’s not quite as big as our 555 footstool, nor as tasty as our edible version, but it’s a great little circuit, and it’s got legs.

Photomask Mirrors

Untitled

At our local Silicon Valley electronics surplus shops and electronics flea market, we frequently come across all sorts of bizarro semiconductor manufacturing paraphernalia. Here is one of those types that we have written about before, in our coaster project:

Photolithographic masks, or photomasks are clear templates used in semiconductor manufacturing. Typically, they are made of UV-grade fused silica and have a highly intricate chrome metal film pattern on one side.

The most commonly available masks are test patterns used for calibration, as production masks are guarded carefully. This particular one dates back to 1983!

Untitled

Now looking inside at it, it’s hardly a mask at all. It’s nearly fully silvered—perhaps a mask pulled out before the etching step of its process.

Untitled

If you look at an oblique angle, you will find a few incredibly detailed patterns, and some printed on markings. This one is marked “5.1 INCH ARRAY” across the top and “1447 3-OCT-83-13. 5” across the bottom.

Untitled

So, what to do with them? Since they don’t have the neat patterns that made those coasters so cool, we used some truss-head screws to mount them to the wall.

Untitled

And here we are then, using a couple of photolithographic mask as bathroom mirrors! (With a couple of units at different heights for different-height people.) It solves a couple of problems at once: how to display the beautiful ephemera of semiconductor manufacturing, and what to do about a soulless little extra bathroom at our shop that didn’t come with a mirror.

 

Dr. Nim

Our friend Brian (the designer of the EBB driver board which is used in the Eggbot) recently posted this picture on twitter, with the following caption:

Kids found 1966 ‘computer’ ‘game’ in the closet and LOVE it. Dr. Nim always wins. Our future may be OK.

Dr. NIM was designed by the same engineer, John Godfrey, who designed the Digi-Comp II, and it was manufactured in the mid-1960′s by the same company, E.S.R. Inc. It is even described in the same patent as the Digi-Comp II and works in the same manner, using mechanical flip-flops triggered by marbles. Only, to play the ancient game of Nim instead of doing binary calculations. We were very curious about how Brian came by one, and asked for more information. He wrote what follows:

We were on a week long vacation in Michigan. We rented a large house on the shore of Lake Michigan near Traverse City. The house looked like an extreme example of 1960′s decorating—nothing has been updated since. (Large tables with built-in ash trays, shag carpet, an old radio that had a “magic eye” that lit up when your FM radio station was ‘in hi-fi stereo’, etc.) And, in the closet with the games, was one called Dr. Nim. Us adults never gave it a second glance until one of the older kids noticed that it said “computer” on it, and pulled it out to see if she could get on Facebook with it. My ears perked up, and when I saw the front cover, I couldn’t stop playing with it. Which is not surprising considering my background as an embedded systems engineer. But what I couldn’t believe is that the kids loved it too! We were on vacation with 2 other families, each of which had 3 kids (like ours) of various ages. Very quickly, the 10 year old figured out how to beat Dr. Nim. Of course that made all the other kids want to try. Even the 4 year old learned to play. And then some of the other adults (even non-engineers) tried it for themselves, asking how it could possibly know how many marbles to take each turn so that it would (almost) always win. “How can pieces of plastic be a computer?” they asked. So we had a nice chat about where the term ‘computer’ comes from.

The thing that got me most excited was not that (modern) kids picked it up and were fascinated by it, nor that other adults were intrigued, but the thought that, in 1968 when it was available for sale to the general public, enough normal Americans bought it that it ended up in people’s game closets along with decks of cards and Monopoly. I suppose the thought of owning a ‘computer’ when such things were all the rage, was so new that spending a few dollars on a plastic mechanical game computer was something a lot of people did just out of curiosity.

And the instruction manual! I should have scanned it in. It has a mini-course in binary logic and boolean equations, ending with a discussion on how the game works, and how you can set it up in several different ways to play different games. And then it went on with “does this mean Dr. Nim can think?” and the open ended questions of machine thinking.

Too bad somebody doesn’t make something like that today . . . .  <grin>

After Brian wrote back to us, we found the manual for Dr. Nim through the Friends of Digi-Comp group. (Dr. Nim games frequently come up on eBay as well, if you’re interested in playing with one.)

The manual is truly incredible, with in-depth discussions about not just the mechanism of the game, but commentary on the effect of computing on culture in the long run. We’ll leave you with a thought from the manual, c. 1965:

The strides that man has made in the last 15 years in developing machines that extend and supplement his thinking are truly astounding. Who can say what enormous strides will take place in the next 15 to 30 years?