Roundup: Simple LED Projects

SimplePumpkins - 11

We’ve put together a roundup of our simplest LED projects; easy things to put together mostly with a bare LED and a coin cell.

Pictured above, Basics: Simple LED Pumpkins

Headless horseman LED Ghostie

How to hack LEDs into Lego minifigures for Halloween, and LED Ghosties for Halloween

urchin - 13 RoboGames Awards (on)

LED-lit sea urchin shells, RoboGames Awards

5 mm warm white diffused-lens LED Throwies - 03

Picking resistors for LEDs  and Some thoughts on throwies

lanterns - 11

Quick, easy, temporary, and beautiful LED garden lights

toner - 15 Soft Circuit Merit Badge14

Paper Circuitry at Home: Electric Origami, and the Soft circuitry merit badge

EdgeLitCard - 49 Edge Lit Cards

Edge-lit holiday cards and part II, Refining edge-it holiday cards

WaterColorBot at Kickstarter: One Day Left

WaterColorBot Drawing
The Kickstarter campaign for Super Awesome Sylvia’s WaterColorBot is almost at a close, with just 24 hours remaining; it winds up tomorrow (Thursday) morning, at 7 AM eastern time.

So, if you haven’t signed up yet— and you think you might like to —this would be a great time to do so. If you’d like to learn more about the WaterColorBot, we’ve written a number of articles here on our blog, and there is also a detailed introduction on the Kickstarter page itself.

And for those of you who have backed our project, we are thrilled to have your support, and to have you along with us as we unleash so many art robots upon the world this fall. We can’t wait to see what kinds of amazing things people will create with them.

WaterColorBot Drawing

Artwork painted on the WaterColorBot by Robert “RoboGenius” Sloan

Laser Marking with Moly

MolyMarking 9

A low power CO2 laser cutter (like the one that we use) is fantastic for cutting and engraving wood, fabric, paper, and plastics. It’s also great for engraving painted or otherwise surface coated metal, like anodized aluminum (for example, making the labels on a Maglite).

However, with only a few exceptions, a laser like this generally falls down flat if you want to cut or engrave a chunk of bare metal. One exception is that you can actually cut through metal if it’s thin enough. Another is that you can make dark marks on metal with the help of a ceramic coating compound like CerMark.  CerMark is sprayed on metal, then blasted with the laser so that it fuses to the surface, leaving a dark, permanent mark. Unfortunately, a spray can of CerMark costs $60, and as it is a specialty item, it may not be easily available when you happen to need it. So what do you do if you need something like this and you don’t have it?
Continue reading Laser Marking with Moly

Inside the ULN2003

Over at ZeptoBars, they have an incredibly detailed “take-apart” post on what’s inside the ULN2003 seven channel Darlington driver chip. The ULN2003 is commonly used for driving LED displays—you can find it, for example, in our Mignonette game.

We often receive comments that while out microchip photos are beautiful and interesting, it is completely unclear how integrated circuit implements basic elements and form larger circuit. Of course it is impossible to do a detailed review of an 1’000’000 transistor chip, so we’ve found simpler example: ULN2003 – array of Darlington transistors.

They’ve stripped off the outer housing and put it under the microscope. They then analyzed the photos to show you what parts make up the individual transistors, resistors and diodes inside the chip.

Three Little Upgrades to the WaterColorBot

WaterColorBot Drawing

Even while the Kickstarter campaign for our WaterColorBot is in full swing, we’re continuing to improve its hardware design. Here are a select few of the refinements we have made since the last revision that will make the WaterColorBot better for everyone.

Continue reading Three Little Upgrades to the WaterColorBot

Open Medical Hardware: The Open Stent

Untitled
Untitled
The stent pictured above is an example of an Open Stent from NDC, makers of nitinol materials and devices, particularly for medical applications. In their introduction to the project, they write:

The first problem that we encounter when developing useful and practical educational resources for stent design is that every design we might want to use as an example is proprietary! That leaves us without much to talk about… So to solve this problem, the first step was to create a design to use as an example. The Open Stent is designed to be completely generic, but also realistic, and relatively easy to modify and extend to be useful for whatever purpose a designer intends.

In addition to publishing their draft of Open Stent Design, which they call “a practical guide and resource for design and analysis of a generic Nitinol stent,” NDC has provided extensive calculation tools and CAD files as well, to help others evaluate and create derivatives of the design.

The project is a fascinating open source hardware use case, where creating an open design provides a platform for education and discussion where none existed before.  It’s also very exciting to recognize this as an early example of open source hardware in the field of medical devices— one of the places where open hardware can potentially make a very big difference in the world.