Electro-Kistka: Alternate In-Place Egg Dyeing Technique

After seeing our recent post on dyeing in eggs in place with the Eggbot, Ragnar posted instructions in the forums for an alternative egg dyeing technique.

It involves pre-installing a plastic dyeing bag at the time of positioning the egg in the Eggbot. Full instructions (with more photos) are in the forum post. Thank you for demonstrating this technique, Ragnar!

Women in the Maker Movement

In honor of National Women in Engineering Day, the Make blog is profiling women in the maker community this week, including me!

…this week we’d like to bring you profiles on women who are roboticists, artists, designers, programmers, and makers of all kinds over the next few days, and we’ll be making an effort to make sure that the women in the maker movement get their fair share of the spotlight as we build our maker community in the future.

Electro-Kistka: Dyeing an Egg in Place?

Kistka-brush 11

In our annoucement article about the EggBot Electro-Kistka — the hot wax dispenser for the EggBot — we noted that it can be challenging to reposition an egg after taking it out to dye the egg between wax layers.

As an alternative suggestion, reader Dan commented:

Could you leave the egg in the EggBot and paint on the first layer(s) of dye with a brush? Then dip the egg for the last layer to get the ends covered.

Well, let’s try and see how it turns out!

Continue reading

Ingenious 1970′s Technology: The Flip Flash

FlipFlash 5

Once upon a time, cameras did not come with LED illumination or even xenon strobes, but rather with a socket that could fire a one-time-use flashbulb.

An advance from this was the “flip flash” cartridge which held 8 or 10 flash bulbs, ganged up so that you could take one photo after another, without pausing to swap bulbs. Each time that you took a picture (exposing actual film!), the next flashbulb in the cartridge would fire.

But you might ask a tricky question here: How does it know which bulb to fire next?

Continue reading

A Giant Breadboard for the Giant 555

giantbreadboard 1

One of the common reactions that people have when they first see our Three Fives kit is to joke “Now all I need is a giant breadboard!”  Well, Michael Pechner actually designed and made one, and put the files up on Thingiverse.  He built the design in Fusion 360 with a little help from Michael Gregg and printed it out in PLA ABS on his 3D printer.

giantbreadboard 6
giantbreadboard 3

Thus far, the design is “plastic only,” without the metal inserts that one would find in a real electronic breadboard — but that’s okay, since the aluminum legs on the Three Fives kit are also decorative rather than functional. But, there are holes in the tops and slots in the bottom in case someone would like to add them.

 

3D LED POV Mirror

“We Are with You, Mirror” is a piece by Brady Marks from VIVO Media Arts Centre that was shown at the Vancouver Mini Maker Faire. It is a 3D persistence of vision volumetric display that acts as a mirror, using four spinning Peggy 2 boards to reflect visitors movements in low resolution 3D LED glory.

Thank you to Brady for sending in the video!

The Incredible Computer-Controlled … Computer!

wcb-surface 7

A guest post by Daniel Gentleman 

About a year ago, I started working on a project that used robotics to control a Surface Pro tablet. Not long after I started, I got my first glimpse at the the WaterColorBot on display at Maker Faire Bay Area 2013. The WaterColorBot is designed to carry a paintbrush over a piece of paper, raising and lowering it as needed to paint a picture. The movement and software control is similar to CNC router with special design modifications to make it lighter, cheaper and easier to control. A CNC router has to move heavyweight cutting bit with friction so needs expensive motors, rails, and belts. The WaterColorBot, on the other hand, needs only to move a paintbrush in a low friction environment.

I was instantly sold on the idea of using a WaterColorBot to control the Surface. I backed the Kickstarter, waited for my bot to arrive, and started working on software. When the WaterColorBot arrived, I was not disappointed. The assembly was quick and I was robotically painting in no time.

With the big mechanical and electronic solutions solved, my attention turned to the tablet. The Surface Pro is rare among tablets in that it uses a digitizer that allows extremely precise tracking with a stylus along with “hover” and “right-click” functionality. It does not need to be electrically grounded like a stylus for a screen that only supports capacitive touch. I was certain that the Surface Pro was the way to go, but not quite how it was going to be held together. The project was about to take a another serendipitous turn.

 

wcb-surface 1

The custom-cut spoilboard

At this point, I shared my enthusiasm with Windell and Lenore of Evil Mad Scientist and they gave me a unique offer: Stop by the Evil Mad Scientist shop and together we would make a custom cut spoilboard (lower deck) fitted to mount the Surface Pro 2. Wielding digital calipers and other measurement and software tools, Windell came up with a design that held the tablet firmly and had extra space cut out for the charger, power button, and USB cable.

wcb-surface 2
wcb-surface 3 wcb-surface 4

The area beneath the tablet has a lip and a lower recessed area. This design reduces wobble and makes it look even better. On the topic of machining – I got a few lessons in how larger CNC machines work. Windell showed me some design considerations in software and gave me a safety briefing about the CNC router itself. This thing can cut fast.

After a little sanding, we fitted the tablet, spoilboard, and WaterColorBot together. Having the co-creators of the WaterColorBot with me on this journey was priceless, as we can see from the final assembly. The first spoilboard we cut matched perfectly and the tablet is held firmly in place.

wcb-surface 6

With enthusiasm fueled by seeing it all fit together, we decided to tell the WaterColorBot to do some painting. Windell loaded up an example sketch in Inkscape and, with only a minute to calibrate the stylus height, we were drawing!

wcb-surface 7

The software running on the Surface Pro is called FreshPaint and we chose a simple marker tool. In the video, you’ll hear a laughter break where the Surface picked up the floating toolbar in the app and dragged it around the screen.

Given a little time, we could have taught the WaterColorBot to change brushes and colors in FreshPaint, but our goals for the day were met. The light weight and low friction of the Surface stylus is perfectly matched for use on the WaterColorBot. A custom fitted spoilboard means the Surface will always be at the exact same place on the X/Y plane, greatly simplifying future software development. Next project: Teaching the robot how to see!

wcb-surface 8
(Full disclosure: My day job is Systems Operations with Yammer, a Microsoft company. This project and use of the Surface Pro 2 is not affiliated with Microsoft in any way nor did they influence the project with sponsorship or exercise any editorial control. If they had, I’d try to talk them into contributing a Surface Pro 3! “Surface” is a trademark of Microsoft Corporation.)
 

Hershey Text JS

Hershey Text JS

James “techninja” Todd has just released Hershey Text JS, a port of the Hershey fonts to JSON, capable of being rendered quickly via JavaScript & SVG.

The Hershey fonts a classic set of “engraving” or “stroke based” (as opposed to outline based) fonts that are excellent for use with all kinds of physical cutting, drawing, and painting machines. Several years ago we introduced the Hershey Text extension for Inkscape, and you can find a more in depth introduction to the Hershey fonts in that article.  Hershey Text JS is adapted from our Inkscape extension, and provides easy access to the font data for programmers who prefer to work in javascript.

How Egg Crate Foam is Made

foamrubber
Ever wonder how they make foam rubber into an “egg crate” shape? You can tell that it isn’t molded that way, because there is not a smooth skin on the surfaces. And it clearly isn’t milled to that shape, since it comes in matched top and bottom pieces that are cut from the same initial block of foam. So how is it done? Amazingly enough, it’s done with a bandsaw.

Egg crate, acoustic, and other shapes of “convoluted foam” are cut with a special machine called a convolutor, which uses powerful rollers to feed flat sheets of foam rubber into a high-tension bandsaw.  The rollers are covered with bumps that stretch and distort the foam such that the saw cuts to a variable depth, with extremely little waste.

You can watch the process in this video from Italian Cutting Systems (noting that the bandsaws are hidden behind protective covers):